f07 — Linear Equations (LAPACK) f07uhc

1

NAG C Library Function Document
nag_dtprfs (f07uhc)

Purpose

nag_dtprfs (f07uhc) returns error bounds for the solution of a real triangular system of linear equations
with multiple right-hand sides, AX = B or ATX = B, using packed storage.

2

Specification

void nag_dtprfs (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans,

3

Nag_DiagType diag, Integer n, Integer nrhs, const double apl[],
const double b[], Integer pdb, const double x[], Integer pdx, double ferr[],
double berr[], NagError *fail)

Description

nag_dtprfs (f07uhc) returns the backward errors and estimated bounds on the forward errors for the
solution of a real triangular system of linear equations with multiple right-hand sides AX = B or
AT X = B, using packed storage. The function handles each right-hand side vector (stored as a column of
the matrix B) independently, so we describe the function of nag_dtprfs (f07uhc) in terms of a single right-
hand side b and solution z.

Given a computed solution z, the function computes the component-wise backward error (3. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

(A+6A)x = b+ 6b
|6a;j| < Bla;;| and |6b;| < B[by].

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |x; — Z;|/ max |z;|
1 1

where z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.
uplo — Nag_UploType Input

On entry: indicates whether A is upper or lower triangular as follows:

[NP3645/7] 07uhe.1

f07uhc NAG C Library Manual

if uplo = Nag_Upper, A is upper triangular;
if uplo = Nag_Lower, A is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: trans — Nag TransType Input
On entry: indicates the form of the equations as follows:

if trans = Nag NoTrans, the equations are of the form AX = B,

if trans = Nag_Trans or Nag_ConjTrans, the equations are of the form A7 X = B.

Constraint: trans = Nag _NoTrans, Nag_Trans or Nag_ConjTrans.

4: diag — Nag DiagType Input
On entry: indicates whether A is a non-unit or unit triangular matrix as follows:
if diag = Nag_NonUnitDiag, A is a non-unit triangular matrix;

if diag = Nag_UnitDiag, A is a unit triangular matrix; the diagonal elements are not
referenced and are assumed to be 1.

Constraint: diag = Nag_NonUnitDiag or Nag_UnitDiag.

5: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

6: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

7: ap[dim] — const double Input
Note: the dimension, dim, of the array ap must be at least max(1,n x (n+1)/2).

On entry: the n by n triangular matrix A, packed by rows or columns. The storage of elements a;
depends on the order and uplo parameters as follows:

if order = Nag_ColMajor and uplo = Nag_Upper,
a;; is stored in ap[(j — 1) x j/2 +i— 1], for i < j;
if order = Nag_ColMajor and uplo = Nag_Lower,
a;; is stored in ap[(2n — j) x (j —1)/2 4+ — 1], for i > j;
if order = Nag_RowMajor and uplo = Nag_Upper,

a;; is stored in ap[(2n — i) x (i —1)/2 4 j — 1], for i < j;

if order = Nag_RowMajor and uplo = Nag_Lower,
a;; is stored in ap[(i — 1) x /24 j — 1], for i > j.
8: b[dim] — const double Input

Note: the dimension, dim, of the array b must be at least max(l,pdb x nrhs) when
order = Nag_ColMajor and at least max(1, pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(i — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

f07uhc.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07uhc

9: pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:
if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag RowMajor, pdb > max(1, nrhs).

10: x[dim] — const double Input
Note: the dimension, dim, of the array x must be at least max(l,pdx x nrhs) when
order = Nag_ColMajor and at least max(1,pdx x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix X is stored in x[(j — 1) x pdx + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + 7 — 1].
On entry: the n by r solution matrix X, as returned by nag_dtptrs (f07uec).

11: pdx — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:
if order = Nag_ColMajor, pdx > max(1,n);
if order = Nag_RowMajor, pdx > max(1, nrhs).

12: ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).

On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,...,n

13: berr|[dim| — double Output
Note: the dimension, dim, of the array berr must be at least max (1, nrhs).

On exit: berr[j — 1] contains the component-wise backward error bound § for the jth solution
vector, that is, the jth column of X, for j=1,2,....7.

14: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
On entry, n = (value).

Constraint: n > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pdx = (value).
Constraint: pdx > 0.

NE_INT_2

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

[NP3645/7] f07uhc.3

f07uhc NAG C Library Manual

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = {value).
Constraint: pdx > max(1, nrhs).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

A call to nag_dtprfs (f07uhc) involves, for each right-hand side, solving a number of systems of linear
equations of the form Ax = b or A"2 = b; the number is usually 4 or 5 and never more than 11. Each
solution involves approximately n? floating-point operations.

The complex analogue of this function is nag_ztprfs (f07uvc).

9 Example
To solve the system of equations AX = B and to compute forward and backward error bounds, where
430 0.00 0.00 0.00 —12.90 -21.50
A —3.96 —-4.87 0.00 0.00 d B— 16.75 14.93
| o040 031 —802 000 | M TT| 1755 633 |
—-0.27 0.07 —-595 0.12 —11.04 8.09

using packed storage for A.

9.1 Program Text

/* nag_dtprfs (f07uhc) Example Program.
* Copyright 2001 Numerical Algorithms Group.
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)

{

f07uhc.4 [NP3645/7]

f07 — Linear Equations (LAPACK) f07uhc

/* Scalars *x/

Integer ap_len, i, j, n, nrhs, berr_len, ferr_len;
Integer pdb, pdx;

Integer exit_status=0;

Nag_UploType uplo_enum;

NagError fail;

Nag_OrderType order;

/* Arrays */

char uplo[2];

double *ap=0, *b=0, *berr=0, *ferr=0, *x=0;

#ifdef NAG_COLUMN_MAJOR
#define A _UPPER(I,J) aplJ*(J-1)/2 + I - 1]
#define A_LOWER(I,J) apl[(2*n-J)*(J-1)/2 + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I,J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) apl[(2*n-I)*(I-1)/2 + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define X(I,J) x[(I-1)*pdx + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("£07uhc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("$*[*\n] ");
Vscanf ("$1d%1d%*["\n] ", &n, &nrhs);
berr_len = nrhs;
ferr_len = nrhs;
ap_len = nx(n+1)/2;

#ifdef NAG_COLUMN_MAJOR

pdb = n;

pdx = n;
#else

pdb = nrhs;

pdx = nrhs;
#endif

/* Allocate memory */

if (!(ap = NAG_ALLOC(ap_len, double)) |
b = NAG_ALLOC(n * nrhs, double))
berr = NAG_ALLOC (berr_len, doubl
ferr = NAG_ALLOC(ferr_len, doubl
x = NAG_ALLOC(n * nrhs, double))

d® D

Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

¥

/* Read A and B from data file, and copy B to X */
Vscanf (" 7 %1ls ’'%*[*\n] ", uplo);
if (*(unsigned char *)uplo == 'L’)
uplo_enum = Nag_Lower;
else if (*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1)

{

[NP3645/7] 07uhe.5

f07uhc
for (j = i; j <= n; ++j)
Vscanf ("$1f", &A_UPPER(i,3));
¥
Vscanf ("$x[*\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (j = 1; J <= 1i; ++3)
Vscanf ("$1f", &A_LOWER(i,j));
¥
Vscanf ("sx["\n] ");
}
for (i = 1; i <= n; ++1i)
{

for (j = 1; j <= nrhs; ++3)
Vscanf ("$1f", &B(i,3));

}
Vscanf ("s*x["\n] ");
for (i = 1; i <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
X(i,3) = B(i,]J);
}

/* Compute solution in the array X */
fO7uec(order, uplo_enum, Nag_NoTrans, Nag_NonUnitDiag, n,
nrhs, ap, x, pdx, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7uec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Compute backward errors and estimated bounds on the *x/
/* forward errors */

fO07uhc(order, uplo_enum, Nag_NoTrans, Nag_NonUnitDiag, n,
nrhs, ap, b, pdb, x, pdx, ferr, berr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07uhc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print solution */

Vprintf ("\n");
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs,
x, pdx, "Solution(s)", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

Vprintf ("\nBackward errors (machine-dependent)\n");

for (j = 1; j <= nrhs; ++j)
Vprintf ("$1l.1le%s", berr[j-1]1, j%7==0 2"\n":" ");
Vprintf ("\nEstimated forward error bounds "
"(machine-dependent)\n") ;

for (j = 1; j <= nrhs; ++j)
Vprintf ("s1l.1less", ferr[j-11, (j%7==0||j==nrhs) 2"\n":"
END:
if (ap) NAG_FREE (ap);
if (b) NAG_FREE(Db);
if (berr) NAG_FREE (berr);
if (ferr) NAG_FREE(ferr);

JO07uhc.6

NAG C Library Manual

[NP3645/7]

f07 — Linear Equations (LAPACK) f07uhc

if (x) NAG_FREE (x);

return exit_status;

3

9.2 Program Data

fO07uhc Example Program Data

4 2 :Values of N and NRHS
'L’ :Value of UPLO

4.30
-3.96 -4.87

0.40 0.31 -8.02
-0.27 0.07 =5.95 0.12 :End of matrix A

-12.90 -21.50
16.75 14.93
-17.55 6.33
-11.04 8.09 :End of matrix B

9.3 Program Results

fO07uhc Example Program Results

Solution(s)

1 2
1 -3.0000 -5.0000
2 -1.0000 1.0000
3 2.0000 -1.0000
4 1.0000 6.0000
Backward errors (machine-dependent)
6.9e-17 0.0e+00
Estimated forward error bounds (machine-dependent)
8.3e-14 2.6e-14

[NP3645/7] f07uhe.7 (last)

	f07uhc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	trans
	diag
	n
	nrhs
	ap
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

