
NAG C Library Function Document

nag_dtprfs (f07uhc)

1 Purpose

nag_dtprfs (f07uhc) returns error bounds for the solution of a real triangular system of linear equations

with multiple right-hand sides, AX ¼ B or ATX ¼ B, using packed storage.

2 Specification

void nag_dtprfs (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans,
Nag_DiagType diag, Integer n, Integer nrhs, const double ap[],
const double b[], Integer pdb, const double x[], Integer pdx, double ferr[],
double berr[], NagError *fail)

3 Description

nag_dtprfs (f07uhc) returns the backward errors and estimated bounds on the forward errors for the
solution of a real triangular system of linear equations with multiple right-hand sides AX ¼ B or

ATX ¼ B, using packed storage. The function handles each right-hand side vector (stored as a column of
the matrix B) independently, so we describe the function of nag_dtprfs (f07uhc) in terms of a single right-
hand side b and solution x.

Given a computed solution x, the function computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

ðAþ �AÞx ¼ bþ �b
j�aijj � �jaijj and j�bij � �jbij:

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i

jxi � x̂xij=max
i

jxij

where x̂x is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: indicates whether A is upper or lower triangular as follows:

f07 – Linear Equations (LAPACK) f07uhc

[NP3645/7] f07uhc.1

if uplo ¼ Nag Upper, A is upper triangular;

if uplo ¼ Nag Lower, A is lower triangular.

Constraint: uplo ¼ Nag Upper or Nag Lower.

3: trans – Nag_TransType Input

On entry: indicates the form of the equations as follows:

if trans ¼ Nag NoTrans, the equations are of the form AX ¼ B;

if trans ¼ Nag Trans or Nag ConjTrans, the equations are of the form ATX ¼ B.

Constraint: trans ¼ Nag NoTrans, Nag Trans or Nag ConjTrans.

4: diag – Nag_DiagType Input

On entry: indicates whether A is a non-unit or unit triangular matrix as follows:

if diag ¼ Nag NonUnitDiag, A is a non-unit triangular matrix;

if diag ¼ Nag UnitDiag, A is a unit triangular matrix; the diagonal elements are not
referenced and are assumed to be 1.

Constraint: diag ¼ Nag NonUnitDiag or Nag UnitDiag.

5: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

6: nrhs – Integer Input

On entry: r, the number of right-hand sides.

Constraint: nrhs � 0.

7: ap½dim� – const double Input

Note: the dimension, dim, of the array ap must be at least maxð1; n� ðnþ 1Þ=2Þ.
On entry: the n by n triangular matrix A, packed by rows or columns. The storage of elements aij
depends on the order and uplo parameters as follows:

if order ¼ Nag ColMajor and uplo ¼ Nag Upper,
aij is stored in ap½ðj� 1Þ � j=2þ i� 1�, for i � j;

if order ¼ Nag ColMajor and uplo ¼ Nag Lower,
aij is stored in ap½ð2n� jÞ � ðj� 1Þ=2þ i� 1�, for i � j;

if order ¼ Nag RowMajor and uplo ¼ Nag Upper,
aij is stored in ap½ð2n� iÞ � ði� 1Þ=2þ j� 1�, for i � j;

if order ¼ Nag RowMajor and uplo ¼ Nag Lower,
aij is stored in ap½ði� 1Þ � i=2þ j� 1�, for i � j.

8: b½dim� – const double Input

Note: the dimension, dim, of the array b must be at least maxð1;pdb� nrhsÞ when
order ¼ Nag ColMajor and at least maxð1; pdb� nÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix B is stored in b½ðj� 1Þ � pdbþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix B is stored in b½ði� 1Þ � pdbþ j� 1�.
On entry: the n by r right-hand side matrix B.

f07uhc NAG C Library Manual

f07uhc.2 [NP3645/7]

9: pdb – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:

if order ¼ Nag ColMajor, pdb � maxð1;nÞ;
if order ¼ Nag RowMajor, pdb � maxð1; nrhsÞ.

10: x½dim� – const double Input

Note: the dimension, dim, of the array x must be at least maxð1;pdx� nrhsÞ when
order ¼ Nag ColMajor and at least maxð1; pdx� nÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix X is stored in x½ðj� 1Þ � pdxþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix X is stored in x½ði� 1Þ � pdxþ j� 1�.
On entry: the n by r solution matrix X, as returned by nag_dtptrs (f07uec).

11: pdx – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:

if order ¼ Nag ColMajor, pdx � maxð1; nÞ;
if order ¼ Nag RowMajor, pdx � maxð1;nrhsÞ.

12: ferr½dim� – double Output

Note: the dimension, dim, of the array ferr must be at least maxð1; nrhsÞ.
On exit: ferr½j� 1� contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

13: berr½dim� – double Output

Note: the dimension, dim, of the array berr must be at least maxð1; nrhsÞ.
On exit: berr½j� 1� contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

14: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, nrhs = hvaluei.
Constraint: nrhs � 0.

On entry, pdb ¼ hvaluei.
Constraint: pdb > 0.

On entry, pdx ¼ hvaluei.
Constraint: pdx > 0.

NE_INT_2

On entry, pdb ¼ hvaluei, n ¼ hvaluei.
Constraint: pdb � maxð1; nÞ.

f07 – Linear Equations (LAPACK) f07uhc

[NP3645/7] f07uhc.3

On entry, pdb ¼ hvaluei, nrhs ¼ hvaluei.
Constraint: pdb � maxð1; nrhsÞ.
On entry, pdx ¼ hvaluei, n ¼ hvaluei.
Constraint: pdx � maxð1; nÞ.
On entry, pdx ¼ hvaluei, nrhs ¼ hvaluei.
Constraint: pdx � maxð1; nrhsÞ.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

A call to nag_dtprfs (f07uhc) involves, for each right-hand side, solving a number of systems of linear

equations of the form Ax ¼ b or ATx ¼ b; the number is usually 4 or 5 and never more than 11. Each

solution involves approximately n2 floating-point operations.

The complex analogue of this function is nag_ztprfs (f07uvc).

9 Example

To solve the system of equations AX ¼ B and to compute forward and backward error bounds, where

A ¼

4:30 0:00 0:00 0:00
�3:96 �4:87 0:00 0:00
0:40 0:31 �8:02 0:00

�0:27 0:07 �5:95 0:12

1
CCA

0
BB@ and B ¼

�12:90 �21:50
16:75 14:93

�17:55 6:33
�11:04 8:09

1
CCA

0
BB@ ;

using packed storage for A.

9.1 Program Text

/* nag_dtprfs (f07uhc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{

f07uhc NAG C Library Manual

f07uhc.4 [NP3645/7]

/* Scalars */
Integer ap_len, i, j, n, nrhs, berr_len, ferr_len;
Integer pdb, pdx;
Integer exit_status=0;
Nag_UploType uplo_enum;

NagError fail;
Nag_OrderType order;
/* Arrays */
char uplo[2];
double *ap=0, *b=0, *berr=0, *ferr=0, *x=0;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) ap[J*(J-1)/2 + I - 1]
#define A_LOWER(I,J) ap[(2*n-J)*(J-1)/2 + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I,J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) ap[(2*n-I)*(I-1)/2 + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define X(I,J) x[(I-1)*pdx + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07uhc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%*[^\n] ", &n, &nrhs);
berr_len = nrhs;
ferr_len = nrhs;
ap_len = n*(n+1)/2;

#ifdef NAG_COLUMN_MAJOR
pdb = n;
pdx = n;

#else
pdb = nrhs;
pdx = nrhs;

#endif

/* Allocate memory */
if (!(ap = NAG_ALLOC(ap_len, double)) ||

!(b = NAG_ALLOC(n * nrhs, double)) ||
!(berr = NAG_ALLOC(berr_len, double)) ||
!(ferr = NAG_ALLOC(ferr_len, double)) ||
!(x = NAG_ALLOC(n * nrhs, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file, and copy B to X */
Vscanf(" ’ %1s ’%*[^\n] ", uplo);
if (*(unsigned char *)uplo == ’L’)

uplo_enum = Nag_Lower;
else if (*(unsigned char *)uplo == ’U’)

uplo_enum = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
if (uplo_enum == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{

f07 – Linear Equations (LAPACK) f07uhc

[NP3645/7] f07uhc.5

for (j = i; j <= n; ++j)
Vscanf("%lf", &A_UPPER(i,j));

}
Vscanf("%*[^\n] ");

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

Vscanf("%lf", &A_LOWER(i,j));
}

Vscanf("%*[^\n] ");
}

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= nrhs; ++j)
Vscanf("%lf", &B(i,j));

}
Vscanf("%*[^\n] ");
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= nrhs; ++j)

X(i,j) = B(i,j);
}

/* Compute solution in the array X */
f07uec(order, uplo_enum, Nag_NoTrans, Nag_NonUnitDiag, n,

nrhs, ap, x, pdx, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07uec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute backward errors and estimated bounds on the */
/* forward errors */

f07uhc(order, uplo_enum, Nag_NoTrans, Nag_NonUnitDiag, n,
nrhs, ap, b, pdb, x, pdx, ferr, berr, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from f07uhc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print solution */

Vprintf("\n");
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs,

x, pdx, "Solution(s)", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\nBackward errors (machine-dependent)\n");

for (j = 1; j <= nrhs; ++j)
Vprintf("%11.1e%s", berr[j-1], j%7==0 ?"\n":" ");

Vprintf("\nEstimated forward error bounds "
"(machine-dependent)\n");

for (j = 1; j <= nrhs; ++j)
Vprintf("%11.1e%s", ferr[j-1], (j%7==0||j==nrhs) ?"\n":" ");

END:
if (ap) NAG_FREE(ap);
if (b) NAG_FREE(b);
if (berr) NAG_FREE(berr);
if (ferr) NAG_FREE(ferr);

f07uhc NAG C Library Manual

f07uhc.6 [NP3645/7]

if (x) NAG_FREE(x);

return exit_status;
}

9.2 Program Data

f07uhc Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO
4.30

-3.96 -4.87
0.40 0.31 -8.02

-0.27 0.07 -5.95 0.12 :End of matrix A
-12.90 -21.50
16.75 14.93

-17.55 6.33
-11.04 8.09 :End of matrix B

9.3 Program Results

f07uhc Example Program Results

Solution(s)
1 2

1 -3.0000 -5.0000
2 -1.0000 1.0000
3 2.0000 -1.0000
4 1.0000 6.0000

Backward errors (machine-dependent)
6.9e-17 0.0e+00

Estimated forward error bounds (machine-dependent)
8.3e-14 2.6e-14

f07 – Linear Equations (LAPACK) f07uhc

[NP3645/7] f07uhc.7 (last)

	f07uhc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	trans
	diag
	n
	nrhs
	ap
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

